1,252 research outputs found

    Formation of waterfalls by intermittent burial of active faults

    Get PDF
    Waterfalls commonly exist near bounding faults of mountain ranges, where erosional bedrock catchments transition to depositional alluvial fans. We hypothesize that aggradation on alluvial fans can bury active faults, and that the faults accumulate slip in the subsurface to produce a bedrock scarp. Following entrenchment of the alluvial fan, the scarp can be exposed as a waterfall. To explore this hypothesis, we derived a geometric model for waterfall height that depends on alluvial fan length and the relative time scales of (1) tectonic uplift, (2) a forcing mechanism for cycles of fan aggradation and incision, and (3) a response of fan aggradation to changes in sediment flux. We find that the model is consistent with observations at Gower Gulch, Death Valley, California, where a man-made drainage capture event in 1941 caused rapid fan incision and exposed a waterfall at the canyon-fan transition. We also compared the model to 62 waterfalls in 18 catchments of the Death Valley area and found that at least 15 of the waterfalls are best explained by the fault-burial mechanism. Using field measurements of grain size and channel geometries, we show that the fault-burial mechanism can produce the observed waterfall heights, measuring 4−19 m, under a uniform climatic forcing scenario requiring variations of 20% in precipitation during the late Pleistocene. The fault-burial mechanism, through the creation of upstream propagating waterfalls, may allow catchment-fan systems to experience frequent cycles of enhanced erosion in catchments and deposition on fans that likely convolve tectonic and climatic signals

    Corporate ownership structure and bank loan syndicate structure

    Get PDF
    Using a novel data set on corporate ownership and control, we show that the divergence between the control rights and cash-flow rights of a borrowing firm's largest ultimate owner has a significant impact on the concentration and composition of the firm's loan syndicate. When the control-ownership divergence is large, lead arrangers form syndicates with structures that facilitate enhanced due diligence and monitoring efforts. These syndicates tend to be relatively concentrated and composed of domestic banks that are geographically close to the borrowing firms and that have lending expertise related to the industries of the borrowers. We also examine factors that influence the relation between ownership structure and syndicate structure, including lead arranger reputation, prior lending relationship, borrowing firm informational opacity, presence of multiple large owners, laws and institutions, and financial crises.postprin

    Corporate ownership structure and the choice between bank debt and public debt

    Get PDF
    This article examines the relation between a borrowing firm's ownership structure and its choice of debt source using a novel data set on corporate ownership, control, and debt structures for 9,831 firms in 20 countries from 2001 to 2010. We find that the divergence between the control rights and cash-flow rights of a borrowing firm's largest ultimate owner has a significant negative impact on the firm's reliance on bank debt financing. In addition, we show that the control-ownership divergence affects other aspects of debt structure including debt maturity and security. Our results indicate that firms controlled by large shareholders with excess control rights may choose public debt financing over bank debt as a way of avoiding scrutiny and insulating themselves from bank monitoring.postprin

    Ownership structure and the cost of corporate borrowing

    Get PDF
    This article identifies an important channel through which excess control rights affect firm value. Using a new, hand-collected data set on corporate ownership and control of 3,468 firms in 22 countries during the 1996–2008 period, we find that the cost of debt financing is significantly higher for companies with a wider divergence between the largest ultimate owner’s control rights and cash-flow rights and investigate factors that affect this relation. Our results suggest that potential tunneling and other moral hazard activities by large shareholders are facilitated by their excess control rights. These activities increase the monitoring costs and the credit risk faced by banks and, in turn, raise the cost of debt for the borrower.postprin

    Autogenic entrenchment patterns and terraces due to coupling with lateral erosion in incising alluvial channels

    Get PDF
    The abandonment of terraces in incising alluvial rivers can be used to infer tectonic and climatic histories. A river incising into alluvium erodes both vertically and laterally as it abandons fill-cut terraces. We argue that the input of sediment from the valley walls during entrenchment can alter the incision dynamics of a stream by promoting vertical incision over lateral erosion. Using a numerical model, we investigate how valley wall feedbacks may affect incision rates and terrace abandonment as the channel becomes progressively more entrenched in its valley. We postulate that erosion of taller valley walls delivers large pulses of sediment to the incising channel, potentially overwhelming the local sediment transport capacity. Based on field observations, we propose that these pulses of sediment can form talus piles that shield the valley wall from subsequent erosion and potentially force progressive channel narrowing. Our model shows that this positive feedback mechanism can enhance vertical incision relative to 1-D predictions that ignore lateral erosion. We find that incision is most significantly enhanced when sediment transport rates are low relative to the typical volume of material collapsed from the valley walls. The model also shows a systematic erosion of the youngest terraces when river incision slows down. The autogenic entrenchment due to lateral feedbacks with valley walls should be taken into account in the interpretation of complex-response terraces

    Long maximal incremental tests accurately assess aerobic fitness in class II and III obese men.

    Get PDF
    This study aimed to compare two different maximal incremental tests with different time durations [a maximal incremental ramp test with a short time duration (8-12 min) (STest) and a maximal incremental test with a longer time duration (20-25 min) (LTest)] to investigate whether an LTest accurately assesses aerobic fitness in class II and III obese men. Twenty obese men (BMI≥35 kg.m-2) without secondary pathologies (mean±SE; 36.7±1.9 yr; 41.8±0.7 kg*m-2) completed an STest (warm-up: 40 W; increment: 20 W*min-1) and an LTest [warm-up: 20% of the peak power output (PPO) reached during the STest; increment: 10% PPO every 5 min until 70% PPO was reached or until the respiratory exchange ratio reached 1.0, followed by 15 W.min-1 until exhaustion] on a cycle-ergometer to assess the peak oxygen uptake [Formula: see text] and peak heart rate (HRpeak) of each test. There were no significant differences in [Formula: see text] (STest: 3.1±0.1 L*min-1; LTest: 3.0±0.1 L*min-1) and HRpeak (STest: 174±4 bpm; LTest: 173±4 bpm) between the two tests. Bland-Altman plot analyses showed good agreement and Pearson product-moment and intra-class correlation coefficients showed a strong correlation between [Formula: see text] (r=0.81 for both; p≤0.001) and HRpeak (r=0.95 for both; p≤0.001) during both tests. [Formula: see text] and HRpeak assessments were not compromised by test duration in class II and III obese men. Therefore, we suggest that the LTest is a feasible test that accurately assesses aerobic fitness and may allow for the exercise intensity prescription and individualization that will lead to improved therapeutic approaches in treating obesity and severe obesity

    Formation of waterfalls by intermittent burial of active faults

    Get PDF
    Waterfalls commonly exist near bounding faults of mountain ranges, where erosional bedrock catchments transition to depositional alluvial fans. We hypothesize that aggradation on alluvial fans can bury active faults, and that the faults accumulate slip in the subsurface to produce a bedrock scarp. Following entrenchment of the alluvial fan, the scarp can be exposed as a waterfall. To explore this hypothesis, we derived a geometric model for waterfall height that depends on alluvial fan length and the relative time scales of (1) tectonic uplift, (2) a forcing mechanism for cycles of fan aggradation and incision, and (3) a response of fan aggradation to changes in sediment flux. We find that the model is consistent with observations at Gower Gulch, Death Valley, California, where a man-made drainage capture event in 1941 caused rapid fan incision and exposed a waterfall at the canyon-fan transition. We also compared the model to 62 waterfalls in 18 catchments of the Death Valley area and found that at least 15 of the waterfalls are best explained by the fault-burial mechanism. Using field measurements of grain size and channel geometries, we show that the fault-burial mechanism can produce the observed waterfall heights, measuring 4−19 m, under a uniform climatic forcing scenario requiring variations of 20% in precipitation during the late Pleistocene. The fault-burial mechanism, through the creation of upstream propagating waterfalls, may allow catchment-fan systems to experience frequent cycles of enhanced erosion in catchments and deposition on fans that likely convolve tectonic and climatic signals

    Structure-properties relationships of polyhedral oligomeric silsesquioxane (POSS) filled PS nanocomposites

    Get PDF
    The polyhedral oligomeric silsesquioxane (POSS) additivated polystyrene (PS) based nanocomposites were prepared by melt processing and the structure-properties relationships of the POSS-PS systems were compared to those of the neat PS. In order to investigate the effect of these structural parameters on the final properties of the polymer nanocomposites, five different kinds of POSS samples were used, in particular, POSS with different inorganic cage and with different organic pendent groups. The rheological investigation suggests clearly that the POSS acts as a plasticizer and that the processability of the PS was positively modified. The affinity between the POSS samples and the PS matrix was estimated by the calculated theoretical solubility parameters, considering the Hoy’s method and by morphology analysis. Minor difference between the solubility parameter of POSS and the matrix means better compatibility and no aggregation tendency. Furthermore, the POSS loading leads to a decrease of the rigidity, of the glass transition temperature and of the damping factor of the nanocomposite systems. The loading of different POSS molecules with open cage leads to a more pronounced effect on all the investigated properties that the loading of the POSS molecules with closed cage. Moreover, the melt properties are significantly influenced by the type of inorganic framework, by the type of the pendent organic groups and by the interaction between the POSS organic groups and the host matrix, while, the solid state properties appears to be influenced more by the kind of cage

    Analysis of ERK3 intracellular localization: dynamic distribution during mitosis and apoptosis

    Get PDF
    Extracellular signal-regulated kinases (ERK) 1, 2 and 3 are involved in cell proliferation and differentiation, and apoptosis; although ERK1/2 have been widely studied, limited knowledge on ERK3 is available. The present work aimed at investigating ERK3 distribution during cell cycle and apoptosis in human tumor HeLa cells. The analysis performed by double immunofluorescence and immunoelectron microscopy experiments revealed that during interphase ERK3 is mainly resident in the nucleoplasm in association with ribonuclear proteins involved in early pre-mRNA splicing, it undergoes cell cycle-dependent redistribution and, during apoptosis, it remains in the nucleus in the form of massive nuclear aggregates, then moves to the cytoplasm and is finally extruded
    corecore